-->

Thursday, September 13, 2018

Making and playing with Liquid Oxygen - YouTube
src: i.ytimg.com

Liquid oxygen--abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries--is one of the physical forms of elemental oxygen.


Video Liquid oxygen



Physical properties

Liquid oxygen has a pale blue color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. Liquid oxygen has a density of 1.141 g/cm3 (1.141 kg/L or 1141 kg/m3), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (-218.79 °C; -361.82 °F) and a boiling point of 90.19 K (-182.96 °C; -297.33 °F) at 101.325 kPa (760 mmHg). Liquid oxygen has an expansion ratio of 1:861 under 1 standard atmosphere (100 kPa) and 20 °C (68 °F), and because of this, it is used in some commercial and military aircraft as transportable source of breathing oxygen.

Because of its cryogenic nature, liquid oxygen can cause the materials it touches to become extremely brittle. Liquid oxygen is also a very powerful oxidizing agent: organic materials will burn rapidly and energetically in liquid oxygen. Further, if soaked in liquid oxygen, some materials such as coal briquettes, carbon black, etc., can detonate unpredictably from sources of ignition such as flames, sparks or impact from light blows. Petrochemicals, including asphalt, often exhibit this behavior.

The tetraoxygen molecule (O4) was first predicted in 1924 by Gilbert N. Lewis, who proposed it to explain why liquid oxygen defied Curie's law. Modern computer simulations indicate that although there are no stable O4 molecules in liquid oxygen, O2 molecules do tend to associate in pairs with antiparallel spins, forming transient O4 units.

Liquid nitrogen has a lower boiling point at -196 °C (77 K) than oxygen's -183 °C (90 K), and vessels containing liquid nitrogen can condense oxygen from air: when most of the nitrogen has evaporated from such a vessel there is a risk that liquid oxygen remaining can react violently with organic material. Conversely, liquid nitrogen or liquid air can be oxygen-enriched by letting it stand in open air; atmospheric oxygen dissolves in it, while nitrogen evaporates preferentially.


Maps Liquid oxygen



Uses

In commerce, liquid oxygen is classified as an industrial gas and is widely used for industrial and medical purposes. Liquid oxygen is obtained from the oxygen found naturally in air by fractional distillation in a cryogenic air separation plant.

Air forces have long recognized the strategic importance of liquid oxygen, both as an oxidizer and as a supply of gaseous oxygen for breathing in hospitals and high-altitude aircraft flights. In 1985 the USAF started a program of building its own oxygen-generation facilities at all major consumption bases.

In rocket propellant

Liquid oxygen is a common cryogenic liquid oxidizer propellant for spacecraft rocket applications, usually in combination with liquid hydrogen, kerosene or methane.

Liquid oxygen was used in the very first liquid fueled rocket. Building on this the World War II V2 missile also used liquid oxygen under the name A-Stoff and Sauerstoff. In the 1950's, during the Cold War both the United States' Redstone and Atlas rockets, and the Soviet R-7 Semyorka used liquid oxygen. Later, in the 1960's & 70's, the ascent stages of the Apollo Saturn rockets, and the Space Shuttle main engines used liquid oxygen.

In 2018, many rockets use liquid oxygen:

  • Chinese space program: Long March 5, and its derivations Long March 6, Long March 7
  • Indian Space Research Organisation: GSLV
  • JAXA (Japan): H-IIA and H-IIB
  • Roscosmos (Russia): Soyuz-2 and Angara (under development)
  • ESA (EU): Ariane 5
  • USA
    • SpaceX: Falcon 9 and Falcon Heavy
    • United Launch Alliance: Atlas V, Delta IV Heavy, Vulcan (under development)
    • Northrop Grumman: Antares 230
    • Blue Origin: New Shepard and New Glenn (under development)
    • Rocket Lab: Electron

File:Liquid oxygen in a beaker.jpg - Wikimedia Commons
src: upload.wikimedia.org


History

  • By 1845, Michael Faraday had managed to liquefy most gases then known to exist. Six gases, however, resisted every attempt at liquefaction and were known at the time as "permanent gases". They were oxygen, hydrogen, nitrogen, carbon monoxide, methane, and nitric oxide.
  • In 1877, Louis Paul Cailletet in France and Raoul Pictet in Switzerland succeeded in producing the first droplets of liquid air.
  • The first measurable quantity of liquid oxygen was produced by Polish professors Zygmunt Wróblewski and Karol Olszewski (Jagiellonian University in Kraków) on April 5, 1883.

Video: Bio-available Liquid Oxygen Explained | OxygenSuperCharger
src: oxygensupercharger.com


See also


Liquid Oxygen Drops
src: aircanadaexpressdutyfree.com


References

Source of article : Wikipedia